

Clinical Outcomes of ACE Inhibitors and ARBs in Older Adults More Than 85 Years after Acute Kidney Injury

Taiwan Chi-Mei Medical Center

Jui-Yi, Chen

2025.10.03

Introduction

EDITORIAL

Angiotensin inhibition in patients with acute kidney injury: Dr. Jekyll or Mr. Hyde?

Michael Joannidis 1* and Eric Hoste 2

Intensive care Med. 2018 Jul;44(7):1159-1161.

"Permissive AKI" with treatment of heart failure

Chirag R. Parikh¹ and Steven G. Coca²

Is it in the context of a treatment strategy that is known to affect GFR acutely? Yes (ACEi/ARB, SGLT2 inhibitor, intensive BP control) Are there other reasons for AKI? (infection, GI losses, hypotension, nephrotoxins) No Continue therapy Correct aggravating despite drop in eGFR factors; continue meds Tolerate 'permissive AKI/hypercreatinemia' Scr/GFR improved Yes Not all 'AKI' is the in 24-48 hours same or harmful No Reassure patient (and other Hold meds; restart drugs physicians involved in patient's care) when underlying issue that long-term outcomes are resolved better with continuation

Acute decline

in eGFR

Parikh, C. R. et al. "Permissive AKI" with Treatment of Heart Failure. 2019. Kidney Int. 96 (5), 1066–1068

published: 20 July 2021 doi: 10.3389/fphar.2021.665250

The Impact of Angiotensin-Converting Enzyme Inhibitors or Angiotensin II Receptor Blockers on Clinical Outcomes of Acute Kidney Disease Patients: A Systematic Review and Meta-Analysis

Jui-Yi Chen¹, I-Jung Tsai², Heng-Chih Pan^{3,4}, Hung-Wei Liao⁵, Javier A. Neyra⁶, Vin-Cent Wu^{7,8} and Jeff S. Chueh^{9,10}*

All-cause mortality

	Trea	tment	Co	ntrol		Log Odds-Ratio	Weight
Study	Yes	No	Yes	No		with 95% CI	(%)
Sandeep Brar-2018	3,713	5,743	4,781	4,675		-0.46 [-0.52, -0.40]	67.31
Etienne Gayat(2018)	20	89	153	349		-0.67 [-1.19, -0.15]	1.03
Mathilde Scarton (2019)	12	33	55	248		— 0.49 [-0.23, 1.22]	0.24
Yao Qiao(2020)	786	1,888	434	801		-0.26 [-0.41, -0.12]	9.72
Patrick Bidulka (2020)	941	2,914	1,460	3,778	-	-0.18 [-0.27, -0.08]	21.69
Overall					*	-0.37 [-0.42, -0.32]	
Heterogeneity: I ² = 88.00%	$6. H^2 = 8$	3.33			!		

Test of $\theta_i = \theta_j$: Q(4) = 33.32, p = 0.00

Test of $\theta = 0$: z = -15.65, p = 0.00

Fixed-effects Mantel-Haenszel model

Kidney	event
--------	-------

	Trea	atment	Co	ntrol		Log Odds-Ratio	Weight
Study	Yes	No	Yes	No		with 95% CI	(%)
Sandeep Brar-2018	407	9,020	383	9,102	-	0.07 [-0.07, 0.21]	24.93
Chi-yuan Hsu(2020)	166	1,687	1,925	6,464		-1.11 [-1.27, -0.94]	43.27
Abigail Hines(2020)	22	50	90	183	-	0.11 [-0.67, 0.45]	1.78
Yao Qiao(2020)	176	2,498	87	1,148		-0.07 [-0.34, 0.19]	7.59
Patrick Bidulka (2020)	387	3,468	431	4,807	-	0.22 [0.07, 0.36]	22.43
Overall					•	-0.25 [-0.33, -0.18]	

Heterogeneity: I' = 97.55%, H' = 40.78

Test of $\theta_i = \theta_j$: Q(4) = 163.11, p = 0.00

Test of $\theta = 0$: z = -6.37, p = 0.00

Fixed-effects Mantel-Haenszel model

Kidney events, recurrent AKI or incident CKD or ESKD

Hyperkalemia

	Trea	atment	Co	ontrol	Log Odds-Ratio Weight
Study	Yes	No	Yes	No	with 95% CI (%)
Sandeep Brar(2018)	73	9,382	48	9,409	0.42 [0.06, 0.79] 18.82
Yao Qiao(2020)	593	2,081	193	1,042	0.43 [0.25, 0.61] 81.18
Overall					0.43 [0.27, 0.59]
Heterogeneity: I ² = 70	%, H2	= 0.00			
Test of $\theta_i = \theta_j$: Q(1) = 0	0.00, p	= 0.97			
Test of $\theta = 0$: $z = 5.24$	p = 0	00			

0.0 0.2 0.4 0.6 0.8

Fixed-effects Mantel-Haenszel model

For CKD group

Practice Point 3.6.7:

Continue ACEi or ARB in people with CKD even when the eGFR falls below **30** ml/min per 1.73 m².

Navaneethan et al. KDOQI US Commentary on the KDIGO 2024 Clinical Practice Guideline for the Evaluation and Management of CKD. 2025. AJKD, 85(2)

The gap

- Data on the use of ACEi/ARB in very old patients, those over 85 years, following an episode of AKI remains scarce.
- growing aging population
- increasing prevalence of both AKI and CKD in this group
- the safety and clinical outcomes associated with ACEi/ARB is still unknown for this high-risk population

Methods

TriNetX Research Network

US Collaborative Network from 102 HCOs (healthcare organizations)

- Demographics
- Diagnosis (ICD-10-CM)
- Procedures CPT (Current Procedural Terminology)
- HCPCS (Healthcare Common Procedure Coding System)
- SNOMED (Systematized Nomenclature of Medicine Clinical Terms),
 Comorbidities
- Medication, Laboratory tests, and Health care utilization.

Hospitalization

Jan.01, 2012 discharge Sep.30, 2022

272,779

Ever dialysis for AKI during hospitalization and within 3 months before discharge.

90 Days Hospitalization discharge Jan.01, 2012 Sep.30, 2022 **Exclusion** 130,374 ACEi/ARB before discharge 27,943 Died during hospitalization

72,352

- AKI, requiring dialysis during hospitalization
- Discontinued dialysis after AKI and sustained 90 days

3 months 1 year 90 Days **D**, index time **ACEI/ARB** initiation **OUTCOMES** all-cause mortality MAKE **MACE**

OUTCOMES

Main outcomes

all-cause mortality

Secondary outcomes

- Major adverse kidney events (MAKE)
 death, CKD stage 5, or end-stage kidney disease (ESKD) requiring dialysis initiation
- Major adverse cardiac events (MACE) myocardial infarction, ischemic or hemorrhagic stroke, cardiac arrest, and cardiac death

OUTCOMES

Specific analysis

- Mortality or ESKD
- Mortality or dialysis
- Mortality or myocardial infarction,
- Mortality or stroke

Positive outcome: hypotension, hyperkalemia

Negative outcomes

traumatic brain injury and traffic accidents

OUTCOMES

Positive exposure control: statins v.s. placebo

Negative exposure control:

• Vit C v.s. placebo

Results

	Before matc	hing	_	After matching			
Characteristics	ACEi/ARB	Control	Std.	ACEi/ARB	Control	Std.	
	(n=3,637)	(n=68,715)	diff.	(n=2,892)	(n=2,892)	diff.	
Demographics							
Age (mean \pm SD, year)	88.5 ± 1.8	88.8 ± 1.7	0.18	88.6 ± 1.8	88.7 ± 1.8	0.07	
Male	1,347(40.0)	26,588(39.0)	0.02	1,157(40.0)	1,157(40.0)	< 0.01	
White	2,655(73.0)	49,544(72.1)	0.02	2,111(73.0)	2,030(70.2)	0.06	
Asian	211(5.8)	4,947(7.2)	0.06	168(5.8)	223(7.71)	0.08	
Black or African American	400(11.0)	6,459(9.4)	0.05	318(11.0)	289(10.0)	0.03	
Unknown Race	262(7.2)	5,703(8.3)	0.04	208(7.2)	257(8.9)	0.06	
Comorbidities							
Chronic kidney disease	2,051(56.4)	31,678(46.1)	0.21	1,631(56.4)	1,628(56.3)	< 0.01	
Hypertension	3,382(93.0)	49,406(71.9)	0.58	2,690(93.0)	2,684(92.8)	< 0.01	
Ischemic heart disease	1,855(51.0)	24,188(35.2)	0.32	1,475(51.0)	1,472(50.9)	< 0.01	
Diabetes mellitus	1,287(35.4)	16,766(24.4)	0.24	1,024(35.4)	1,006(34.8)	0.01	

-	Before mate	hing		After matching			
Characteristics	ACEi/ARB Control (n= 3,637) (n=68,715)		Std. diff.	ACEi/ARB (n= 2,892)	$ \begin{array}{c} \hline \text{Control} \\ \text{(n= 2,892)} \end{array} $	Std. diff.	
Medications							
Antiarrhythmics	2,342(64.4)	36,831(53.6)	0.23	1,865(64.5)	1,891(65.4)	0.02	
Diuretics	2,642(67.7)	29,685(43.2)	0.53	1,961(67.8)	<mark>2,013(69.6)</mark>	0.04	
Insulin	1,335(36.7)	18,965(27.6)	0.23	1,064(36.8)	1,058(36.6)	< 0.01	
Oral hypoglycemic agents	775(21.3)	5,016(7.3)	0.42	616(21.3)	628(21.7)	< 0.01	
Beta blockers	2,666(73.3)	37,106(54.0)	0.43	2,123(73.4)	2,178(75.3)	0.05	
CCB	1,928(53.0)	23,363(34.0)	0.40	1,536(53.1)	1,544(53.4)	< 0.01	

	Before match	hing		After matchin		
Characteristics	ACEi/ARB Control (n= 3,637) (n=68,715)		Std. diff.	$\frac{ACEi/ARB}{(n=2,892)}$	$\frac{\text{Control}}{(n=2,892)}$	Std. diff.
Laboratory tests						
Creatinine (mg/dL)	76.9 ± 33.0	74.4 ± 32.3	0.07	76.9 ± 33.0	80.2 ± 34.9	0.02
Hb >12 g/dL	2,913(80.1)	45,489(66.2)	0.32	2,322(80.3)	2,369(81.9)	0.02
Total bilirubin (mg/dL)	0.7 ± 0.6	0.8 ± 1.4	0.09	0.7 ± 0.6	0.74 ± 1.0	0.07
Glycated hemoglobin (%)	6.2 ± 1.5	6.2 ± 1.5	< 0.01	6.2 ± 1.5	6.2 ± 1.5	< 0.01
LDL (mg/dl)	84.7 ± 35.8	87.0 ± 38.1	0.06	84.7 ± 35.8	83.7 ± 36.4	0.03
$BMI (kg/m^2)$	26.6 ± 5.6	25.1 ± 5.7	0.26	26.6 ± 5.6	26.4 ± 6.3	0.03

Primary Outcome

All-cause mortality

Secondary Outcomes

MAKE

MACE

Specific analysis

ESKD or Mortality Dialysis or Mortality AMI or Mortality Stroke or Mortality

Positive control outcomes

Hypotension Hyperkalemia

Negative control outcomes

Traumatic brain injury Traffic accident

Positive control exposure(Statin)

All-cause mortality

MAKE

MACE

Negative control exposure(Vit.C)

All-cause mortality

MAKE

MACE

All-cause mortality

MAKE

All-cause mortality

MAKE

Discussion

Table 2. Correlates of ACE-Inhibitor or ARB Use in 21,138 Patients With a Diagnosis of Hypertension or Proteinuria

		Univariate			Multivariate			
Variable	OR	95% CI	P	OR	95% CI	Р		
Age (y)								
65-74	1.0	Referent	_	1.0	Referent			
75-84	0.94	0.88-1.00	0.04	0.92	0.86-0.98	0.01		
≥85	0.72	0.66-0.78	< 0.001	0.70	0.65-0.76	< 0.001		

Winkelmayer WC, et al. Underuse of ACE inhibitors and angiotensin II receptor blockers in elderly patients with diabetes. Am J Kidney Dis 2005; 46: 1080-7.

Limited use of ACEi/ARB for older populations

- age-related frailty
- limited prognosis
- possible adverse events (kidney function declining)

Endothelial dysfunction

Oxidative stress

Donato AJ, Machin DR, Lesniewski LA. Mechanisms of Dysfunction in the Aging Vasculature and Role in Age-Related Disease. Circ Res 2018; 123: 825-48.

Benefits of ACEi/ARB

 ACEi/ARB have been shown to reduce inflammation and oxidative stress, further contributing to their beneficial effect

Brown NJ, Vaughan DE. Angiotensin-converting enzyme inhibitors. Circulation 1998; 97: 1411-20.

Benefits of ACEi/ARB

- ACEi/ARB therapy may attenuate maladaptive post-AKI responses,
 - persistent glomerular hypertension
 - interstitial fibrosis
 - inflammation, which are more pronounced in aging kidneys.

Brar S, et al. Association of Angiotensin-Converting Enzyme Inhibitor or Angiotensin Receptor Blocker Use With Outcomes After Acute Kidney Injury. JAMA Intern Med 2018; 178: 1681-90.

Risk of hypotension and hyperkalemia

- The most common causes of AKI in this age group include
 - ✓ volume depletion
 - ✓ dehydration
 - ✓ reduced renal perfusion, which are often multifactorial in origin, such as hypotension, sepsis, or diuretic overuse

Nash K, Hafeez A, Hou S. Hospital-acquired renal insufficiency. Am J Kidney Dis 2002; 39: 930-6.

Limitations

- residual confounding from unmeasured covariates and potential misclassifications
- short follow-up duration may have limited our ability to observe long-term cardiovascular outcomes
- several risk factors for mortality
 - ✓ Frailty
 - ✓ functional status
 - ✓ medication adherence
 were not available from the dataset.

Conclusion

adults aged over 85 years who survived dialysis for AKI during hospitalization, the ACEi/ARB therapy

- lower risk of all-cause mortality and major adverse kidney events
- the higher risks of hypotension and hyperkalemia

Taiwan kwuilus0101@gmail.com
Jui-Yi, Chen

ACEi/ARB vs CCB

